SPECTROPHOTOMETRIC SIMULTANEOUS ESTIMATION OFAMLODIPINE BESYLATE AND LISINOPRIL DIHYDRATE IN TABLET DOSAGE FORMS

Manisha Masih ${ }^{1,2 *}$, Abhilasha Mittal ${ }^{2}$, B.C.Nandy ${ }^{2}$
${ }^{1}$ PhD. Research Scholar, Department of Pharmaceutical Science
${ }^{2}$ Jayoti Vidyapeeth Womens University, Vedant Gyan Valley, Jharna Mahala Jobner Link Road, NH-8, Jaipur Rajasthan-303122, India.

Received 21 June 2014; Accepted 3 July 2014

Abstract

Amlodipine Besylate and Lisinopril dihydrate are used for the treatment of hypertension. A binary mixture of Amlodipine Besylate (AML) and Lisinopril dihydrate (LSD) was determined by UV spectroscopic methods. The major aim of this research work is to develop simple, economical, accurate, and precise methods for simultaneous estimation of Amlodipine Besylate (AML) and Lisinopril dihydrate (LSD) in tablet dosage form. The method involved to solve simultaneous equations based on measurement of absorbance at two wavelengths 240 nm ($\lambda_{\max }$ of Amlodipine Besylate (AML)) and 218nm ($\lambda \max$ of Lisinopril dihydrate (LSD)). The two drugs followed BeersLamberts law over the concentration range of $2 \mu \mathrm{~g} / \mathrm{ml}-30 \mu \mathrm{~g} / \mathrm{ml}$ for AML and $2 \mu \mathrm{~g} / \mathrm{ml}-30 \mu \mathrm{~g} / \mathrm{ml}$ for LSD. The accuracy and precision of the methods were determined and the methods validated statically and this technique may be employed to analysed the drug containing Amlodipine besylate (AML) and Lisinopril dihydrate (LSD).

Key words:, Amlodipine Besylate, Lisinopril dihydrate , UV spectroscopy, Simultaneous equation method.

1. INTRODUCTION:

Amlodipine (AML) is chemically 3-ethyl 5-methyl (4RS)- 2-[(2-aminoethoxy) methyl]- 4- (2-chlorophenyl) -6-methyl-1,4- dihydropyridine-3,5- dicarboxylate benzene sulphonate. It is used as Antihypertensive \& antianginal agent ${ }^{[1]}$. Amlodipine act by blocking voltage-sensitive calcium channels (L-type). Amlodipine slow conduction in the SA and AV nodes where action potential propagation depends on slow inward Ca^{2+} current, slowing the heart and terminating SVT by causing partial AV block. It shortens the plateau of the action potential and reduces the force of contraction. Reduced Ca^{2+} entry reduces after depolarization and thus suppresses premature ectopic beats. ${ }^{[2-4]}$
Lisinopril dihydrate (LSD) is chemically(S)- 1-[N2-(1-carboxy-3-phenylpropyl)-L-lysyl]-L-prolinedihydrate. It is also used as Antihypertensive agent. ${ }^{[5]}$ Lisinopril is a potent, competitive inhibitor of angiotensin-converting enzyme (ACE), the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensinaldosterone system (RAAS). [6-8] Lisinopril may be used to treat hypertension and symptomatic congestive heart failure, to improve survival in certain individuals following myocardial infarction and
to prevent progression of renal disease in hypertensive patients with diabetes mellitus and microalbuminuria or overt nephropathy. ${ }^{[9-10]}$

2. MATERIAL AND METHODS:

Instrument:

A Shimadzu UV/Visible spectrophotometer (1700, Shimadzu,Japan) was employed with spectral bandwidth of 2 nm and wavelength accuracy of $\pm 0.5 \mathrm{~nm}$ with automatic wavelength correction with a pair of 10 mm quartz cells.

Chemicals:

Amlodipine besylate and Lisinopril dihydrate (were procured as a gift sample from LUPIN Pharmaceutical Ltd.,Bhopal, India). The commercial pharmaceutical formulation (Amtas-LP, Intas, Ahemdabad) tablet was procured from the local market. Methanol AR grade and Hydrochloric acid was procured from Cipla.
Preparation of standard stock solutions:
The standard stock solutions of $1 \mathrm{mg} / \mathrm{ml}$ of AML and $1 \mathrm{mg} / \mathrm{ml}$ of LSD were prepared. 100 mg of both the drugs were separately taken in 100 ml volumetric flask and dissolved in methanol : 1 N HCl (1:1) solutions and then volume made up to the mark with methanol : 1 N HCl (1:1). Further dilutions were made to in methanol : 1 N
$\mathrm{HCl}(1: 1)$ to obtain concentrations $10 \mu \mathrm{~g} / \mathrm{ml}$ for AML and LSD.

Determination of Absorption Maxima:

By appropriate dilution of standard stock solutions of AML and LSD with methanol : $1 \mathrm{~N} \mathrm{HCl}(1: 1)$, solutions containing $10 \mu \mathrm{~g} / \mathrm{ml}$ of AML and $10 \mu \mathrm{~g} / \mathrm{ml}$ of LSD were scanned separately in the range of 200-400 nm. Wavelength of maximum absorption was determined for both the drugs. AML showed maximum absorbance at 240nm and LSD at 218nm.
Simultaneous Equation Method:
From the stock solution, working standard solution of drugs were prepared by appropriate dilution and was scanned from 400 nm to 200 nm . Two wavelengths were selected for this method i.e. 240 nm and 218 nm that are absorption maximas of AML and LSD, respectively in methanol : $1 \mathrm{~N} \mathrm{HCl}(1: 1)$. Series of dilution were prepared from standard solutions of AML and LSD. The linearity was observed in the concentration range of $2 \mu \mathrm{~g} / \mathrm{ml}-30 \mu \mathrm{~g} / \mathrm{ml}$ for AML and $2 \mu \mathrm{~g} / \mathrm{ml}-30 \mu \mathrm{~g} / \mathrm{ml}$ for LSD. The absorbances were measured at the selected wavelengths and absorptivities ($\mathrm{A} 1 \%, 1 \mathrm{~cm}$) for both the
drugs at both wavelengths were determined. The calibration curves for AML and LSD were plotted in the concentration range of $2 \mu \mathrm{~g} / \mathrm{ml}-30 \mu \mathrm{~g} / \mathrm{ml}$. The concentrations of drugs in sample solution were determined by using the following formula.

$$
\begin{align*}
& \mathrm{A}_{1} \mathrm{ax}_{2}-\mathrm{A}_{2} \text { a }_{1} \\
& C_{y}=------------------- \tag{IV}\\
& a y_{1} a x_{2}-a y_{2} a x_{1}
\end{align*}
$$

A_{1} and $A_{2}=A b s o r b a n c e ~ o f ~ s a m p l e ~ a t ~ \lambda_{1}$ and λ_{2}
C_{x} and $C_{y}=$ Concentrations of AML and LSD in sample matrix.
ax_{1} and $\mathrm{ax}_{2}=$ Absorptivities of AML at λ_{1} and λ_{2}
ay_{1} and $\mathrm{ay}_{2}=$ Absorptivities of LSD at λ_{1} and λ_{2}
By solving the two simultaneous equations, the concentrations of AML and LP in sample solutions were obtained. ${ }^{[11]}$

Figure 1: Scanning of overlain spectra of Amlodipine besylate \& Lisinopril dihydrate in methanol : $\mathbf{1 N ~ H C l}(1: 1)$ solutions.
Simultaneous equation found was
At $\lambda_{240 \mathrm{~nm}}: 1.9=0.19 C_{x}+0.19 C_{y} \ldots \ldots \ldots .(1)$
At $\lambda_{218 \mathrm{~nm}}: 1.5=0.18 C_{x}+0.12 C_{y} \ldots \ldots .$. (2)

Analysis of tablet formulation:

For the estimation of drugs in the commercial formulations, twenty tablets containing 5 mg of AML and 5 mg of LSD were weighed and average weight was calculated. The tablets were crushed and powdered in glass mortar. For the analysis of drugs, quantity of powder equivalent to 5 mg of AML and 5 mg of LSD was transferred to 100 ml volumetric flasks and dissolved in sufficient quantity of methanol : $1 \mathrm{~N} \mathrm{HCl}(1: 1)$. It was sonicated for 30 mins and volume was made up to obtain a stock solution of $1000 \mu \mathrm{~g} / \mathrm{ml}$ of AML and $1000 \mu \mathrm{~g} / \mathrm{ml}$ of LSD. This solution was then filtered through whatmann filter paper (grade one). Further dilutions were made from this stock solution to get required concentration.

RESULTS \& DISCUSSION:

Table 1:

Particulars		Result	
Absorbance of $20 \mu \mathrm{~g} / \mathrm{ml}$ solution of tablet at	240 nm	1.154	
	218 nm	0.959	
Drug	Amlodipine besylate	Lisinopril dihydrate	
Drug found/ label claim (mg)	$5.16^{*} / 5$	$5.14^{*} / 5$	
\%found/\%limit	$103.2 / 90-110$	$102.8 / 90-110$	

Validation:

The method was validated according to ICH guidelines to study linearity, accuracy and precision. ${ }^{[12]}$
Linearity:
The linearity of measurement was evaluated by analyzing different concentrations of the standard solution of AML
and LSD. The Beer law was obeyed in the concentration range $2 \mu \mathrm{~g} / \mathrm{ml}-30 \mu \mathrm{~g} / \mathrm{ml}$ for AML and LSD respectively. The correlation coefficient was found to be 0.9985 at 240 nm for Amlodipine besylate and 0.9993 at 218 nm for Lisinopril dihydrate.

Graph 1 - Calibration curve of Amlodipine Besylate

Graph 2 - Calibration curve of Lisinopril dehydrate Accuracy (Recovery studies):
To ascertain the accuracy of proposed methods, recovery studies were carried out by standard addition method at three different levels ($80 \%, 100 \%$ and 120%). Percent recovery for AML and LSD, was found in the range of 92.3-97.2\% (Table No.2).

Table 2:

Level Recovery (\%)	Drug	Conc. of Drug in $\mu \mathrm{g} / \mathrm{ml}$		Simultaneous Equation Method		
		Drug taken	Std drug added	\% Recovery	SD	\%RSD
80	AML ${ }^{\text {\# }}$	50	2	92.3	0.76	0.83
100		50	2.5	93.4	1.80	1.93
120		50	3	93.6	0.90	0.97
80	LSD ${ }^{\#}$	50	2	96.3	2.02	2.10
100		50	2.5	97.2	2.22	2.29
120		50	3	96.7	1.40	1.45

\# n=3 observations

Precision:

The reproducibility of the proposed methods was determined by performing tablet assay at different time intervals on same day (Intraday precision) and on three different days (Inter-day precision) and by three different analyst (Interanalyst).

Table 3:

Drug	Actual conc. ($\mu \mathrm{g} / \mathrm{ml}$)	Intraday Precision		Interday Precision		Interanalyst Precision	
		SD	\%RSD	SD	\%RSD	SD	\%RSD
Amlodipine Besylate (AML) ${ }^{\text {\# }}$	10	0.529	0.51	0.8	0.78	0.8	0.77
	15	0.529	0.52	0.41	0.40	0.642	0.62
	20	1.058	1.03	0.416	0.40	0.611	0.59
Lisinopril dihydrate (LSD) ${ }^{\text {\# }}$	10	1.05	1.03	0.57	0.56	1.20	1.16
	15	0.50	0.49	0.61	0.59	0.94	0.91
	20	0.503	0.49	1.026	0.99	0.91	0.89

\# n=3 observations

RESULTS AND DISCUSSION:

The methods discussed in the present work provide a convenient and accurate way for simultaneous analysis of AML and LSD. In simultaneous equation method, wavelengths selected for analysis were 240 nm for AML and 218 nm for LSD. In this methods linearity were observed in the concentration range of $2 \mu \mathrm{~g} / \mathrm{ml}-30 \mu \mathrm{~g} / \mathrm{ml}$ for AML and LSD, respectively.
Accuracy of proposed method was ascertained by recovery studies and the results are expressed as \% recovery. Percent recovery for AML, was found in the range of 91.5% to 95.2% \& SD $\pm \%$ RSD was found to be 1.241 ± 1.33. Percent recovery for LSD, was found in the
range of 94.5% to 99.6% \& SD \pm \%RSD was found to be 1.7008 ± 1.76. The results of validation parameters shown in table no. 2 are satisfactory, indicates the accuracy of proposed methods for estimation of AML and LSD. These methods can be employed for routine analysis of the two drugs in combined tablet dosage form. The precision of the developed method was determined by preparing the tablet samples of the same batch in six determinations with three concentrations. The SD \& \%RSD of the assay results, expressed as a percentage of the label claim, was used to evaluate the method precision. The results are shown in Table 3, reveales the good precision of the developed method.

CONCLUSION:

The spectrophotometric methods were developed and validated as per ICH guidelines. The standard deviation and \% RSD calculated for the proposed methods are within limits, indicating high degree of precision of the methods. The results of the recovery studies performed indicate the methods to be accurate. Hence, it can be concluded that the developed spectrophotometric methods are accurate, precise and can be employed successfully for the estimation of Amlodipine besylate and Lisinopril dihydrate in tablet dosage form.

ACKNOWLEDGEMENT:

The authors express their gratitude to LUPIN Pharmaceutical Ltd. Bhopal, India for Gift samples of pure drugs.

REFERENCES:

1. Indian Pharmacopoeia, published by the controller of publication: New Delhi: 2014; II: p.1045-1047.
2. Wilson and Grisvold's Textbook "Organic Medicinal and Pharmaceutical chemistry" edited by John H. Block and John M.Beale, Wolters Kluwer, London : UK: 2004; p. 631.
3. Tripathi KD "Essentials of Medical Pharmacology" $5^{\text {th }}$ ed. Jaypee Brothers Medical Publishers;2004; p.496.
4. Garg G,Saraf S, and Saraf S. "Development and validation of simultaneous estimation of Enalapril
maleate and Amlodione Besylate in combined dosage forms" Trends in App Sci Res 2008;3(3) : 278-284.
5. Chauhan V et al. "A Validated RP-HPLC Method For Simultaneous Estimation of Amlodipine and Lisinopril in Pharmaceutical Dosage Form." Int J Pharm Sci Res, 2011; 2(7) : 1712-1715.
6. Indian Pharmacopoeia, published by the controller of publication: New Delhi: 2014; II: p.2105-2107.
7. Wilson and Grisvold's Textbook "Organic Medicinal and Pharmaceutical chemistry" edited by John H. Block and John M.Beale, Wolters Kluwer, London : UK: 2004; p. 645-646.
8. Tripathi KD "Essentials of Medical Pharmacology" $5{ }^{\text {th }}$ ed. Jaypee Brothers Medical Publishers;2004; p.450451.
9. Lakshmana Rao et al. "Novel Validated RP-HPLC Method for the Simultaneous estimation of Lisinopril and Amlodipine in Bulk and Tablet Dosage Form." Int J of Pharm, Chem and Bio Sci 2011; 1(1) :32-37.
10. Joshi HV. and Patel JK. "New Spectrophotometric Methods for Simultaneous Determination of Amlodipine besylate and Lisinopril in Tablet Dosage Forms." J of App Pharma Sci 2011; 1(6) : 162-164.
11. Beckett A. H., and Stenlake J. B., "Practical pharmaceutical chemistry", $4^{\text {th }}$ ed, Part 2, CBS publishers \& distributors, New Delhi, 2004, p. 286287.
12. ICH Harmonised Tripartite Guidelines, Validation of analytical procedures: text \& methodology, Q2 (R), Nov 2005.
